Tetrahedron Letters,Vol.23,No.14,pp 1447-1450,1982 0040-4039/82/141447-04\$03.00/0
Printed in Great Britain (201982 Pergamon Press Ltd. Printed in Great Britain

GENERATION AND REACTIVITY OF STERICALLY HINDERED BICYCLO[3.l.O]HEX-l-ENES

Richard F. Salinaro and Jerome A. Berson*

Department of Chemistry, Yale University, P.O. Box 6666, New Haven, CT 06511

Abstract: 2 -t-Butylbicyclo[3.1.0]hex-1-ene dimerizes primarily by a $[\sigma + \pi]$ way, whereas 2,5-di-t-butylbicyclo[3.1.0]hex-1-ene undergoes an unusual hydro-
gen shift reaction to 1,3-di-<u>t</u>-butyl-2-methylcyclopentadiene.

The presence of bulky substituents on or near the strained double bond of a bicyclo[3.1.0]hex-1-ene (1) should decrease the olefin's reactivity in $\lceil\pi\rceil$ + π ^{1,2} and $\lceil \sigma + \pi \rceil^2$ dimerization and ultimately might permit the preparation of a persistent member of the class. In pursuit of this goal we have examined three t-butyl-substituted systems and report here the novel behavior of two of them3.

The previous method^{2,4} for generation of the carbenoid intermediates $4a$ and 4b involved α -elimination from the dibromomethylene derivatives $3a$ and $3b$,

which in turn were prepared by the action of CBr_A and Ph_7P^5 on the corresponding ketones $2a$ and $2b$. However, the latter reaction has been reported to fail with sterically hindered ketones $^{\text{5D}}$, and we find similar results with the <u>t</u>– butyl ketone $2c$, which does not give useful amounts of $3c$ by this route.

A solution to this difficulty emerges from the work of Gilbert and his collaborators^{6,7}, who succeeded in generating 1-methyl-1-t-butyl vinylidene from methyl- t -butyl ketone and dimethyl diazomethylphosphonate⁸ (5). The vinylidene was efficiently trapped by cyclohexene⁶. In an intramolecular variant of this reaction, we find that allyl pinacolone 6^9 , 5 , and KOt-Bu react to give a mixture, the volatile portion of which consists of 45% recovered 6 , 45% of a dimeric hydrocarbon, $C_{20}H_{52}$, assigned the $[0 + \pi]$ structure \mathbb{Z}^{3+10} , 7% of an isomeric dimer¹¹, and traces of other products. The single t-butyl group at C_2 thus does not suffice to suppress dimerization of the bicyclo $[3.1.0]$ hex-1-ene.

1448

The incorporation of a second t-butyl group, as in the 2,5-di-t-butyl derivative <u>8</u>,would be expected to decrease the dimerization rate sharply, because now both sites of the $\lceil \sigma + \pi \rceil$ reaction are sterically encumbered. Moreover, although thermal rearrangement of the bicyclo[3.l.O]hex-1-ene to the methylenebicyclo [2.1.0] pentane system $\frac{10}{3}$ is a potential unimolecular escape route²,³ the substitution pattern should make this process much less favorable than usual because the rearranged product $\underline{10}$ embodies the severely destabilizing $^{1\,2}$ eclips $\overline{1}$ vicinal di-t-butyl interaction.

Treatment of ketone 9^{13} with two equivalents of the lithium derivative of the phosphonate 5 at -30° C for 24h, followed by bulb-to-bulb distillation at 20°C gives a 63% yield of a mixture of monomeric $(C_{14}H_{24})$ hydrocarbons in addition to ~20% of recovered ketone <u>9</u>. The major component (90%) of the hydroca bon product is 1,3-di-t-buty1-2-methylcyclopenta-1,4-diene (11), identified spectroscopically¹⁴ and by independent synthesis¹⁵.

For the astonishing rearrangement $\underline{8} + \underline{11}$, we consider three mechanisms whose consequences differ when $\underline{11}$ - \underline{d}_2 is generated from the ketone $\underline{9}$ - $\underline{d}_2\colon$ (i) an allow ed D-shift via a $\begin{bmatrix} 0 & 0 \\ 0 & \sigma^2 \end{bmatrix}$ intramolecular reaction; (ii) an essentially unprecedented, forbidden $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ formation of a symmetrical or effectively symmetrical intermediate (symbolized as 12, which could represent 10 , the corresponding trimethylenemethane, or a rapidly equilibrating pair $(\underline{8}-3,3-\underline{d})$ \longrightarrow $\underline{8}-4,4-\underline{d}$, followed by H- or D- shift. The observed result, as determined by direct ²HNMR on a sample of $\underline{11}$ as obtained from 95% enriched 9-d₂, shows the ratio of methyl to ring deuterium = 0.18 . This is consistent with a mixed-mechanism, e.g., if $\underline{k}_i/\underline{k}_{i}$ = 18/82, but an alternative single mechanism is (iii), with $k_H/k_D = 2.25$.

Scheme IV

Regardless of which is correct, the hydrogen-shift reaction, occurring at or below 20°C, provides an unprecedented escape route for the bicyclo[3.l.O]hex-lene 8. The result suggests that even when dimerization is sterically retarded, these extremely unstable species can make use of normally inaccessible pathways in order to evade a monomeric existence.

Acknowledgment. We thank the Dox Fund for a fellowship (to R.F.S.) and the National Science Foundation for its support through a grant (CHE-8011399) and through the NSF Regional NMR Facility (CHE 7916210).

REFERENCES AND NOTES

- 1. (a) Köbrich, G.; Heinemann, H. Chem. Comm. 1969, 493; (b) Köbrich, G. Angew. Chem. Intl. Ed. Engl. 1973, 12, 464.
- 2. Rule, M.; Berson, J. A. Tetrahedron Lett. 1978, 3191; (b) Rule, M.; Salinaro, R. F.; Pratt, D. R.; Berson, J. A. submitted for publication; (c) Salinaro, R. F.; Berson, J. A. J. Am. Chem. Soc. 1979, 101, 7094; (d) ibid., in press.
- 3. See also Salinaro, R. F.; Berson, J. A. Tetrahedron Lett., accompanying paper.
- 4. Cf. Hartzler, H. D. J. Am. Chem. Soc. 1964, 86, 526.
- 5. (a) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745; (b) Cf. Posner, G. H.; Loomis, B. L.; Sawaya, H. S. Tetrahedron Lett. 1975, 1373, and references cited therein.
- 6. (a) Gilbert, J. C.; Weerasooriya, U.; Giamalva, D. Tetrahedron Lett. 1979, 4619; (b) Gilbert, J. C.; Weerasooriya, U. ibid. 1980, 2041.
- 7. See also (a) Colvin, E. W.; Hamill, B. J. <u>J</u>. C. S. Chem. Comm. 1973, 151; (b) J. Chem. Soc. Perkin Trans. I 1977, 869.
- 8. Seyferth, D.; Marmor, R. S.; Hilbert, P. J. Org. Chem. 1971, 36, 1379.
- 9. Colonge, J.; Lagier, A. Bull. Soc. Chim. France 1949, 16.
- 10. Major isomer (3c or regioisomer): Retention time on OV-17 GC column 27.5 m. ¹NMR (benzene- d_6/CCl_4 , 270 MHz): δ 2.87 (br m, 1H), 2.38 (d, 2H), 1.83-1.19 $(m, 9H)$, 0.98 (s, 9H), 0.88 $(m, 1H)$, 0.80 (s, 9H), 0.70 $(m, 1H)$; ¹³C NMR $(CDC1₇, 67.88 MHz)$ 6144.1(s), 133.7(s), 62.1, 51.6, 38.3, 37.1, 36.4, 34.9, 33.1, 32.3, 31.0, 30.8, 27.8, 27.6, 25.6, 17.4 (pseudo-t). MS: m/e 272 (parent), 215 (base), 159, 145, 57. MS M_r 272.2501. Calcd. for C₂₀H₃₂: 272.2504.
- 11. Minor isomer (<u>3c</u> or regioisomer?): Retention time 32.5 m. 'H NMR (benzene- $\frac{d}{d}$ (CC1₄, 270 MHz): δ 1.14 (s, 9H), 0.80 (s, 9H), 0.56 (m, 1H), 0.39 (m, 1H). Contamination with the major isomer prevented the assignment of other NMR resonances; MS: m/e 272 (parent), 259, 159, 145, 57 (base); MS M_r 272.2501. Calcd. for $C_{20}H_{32}$: 272.2504.
- 12. The steric strain energy in cis-1,3-di-t-butylethylene has been estimated by molecular mechanics calculations to be 11.6 kcal/mol: (a)Wiebenaga, E. H.; Bouwhuis, E. Tetrahedron 1969, 25 , 453; (b) Ermer, O.; Lifson, S. ibid. 1974, 30, 2425.
- 13. Salinaro, R. F., Ph.D. Thesis, Yale University, 1981.
- 14. NMR (benzene- d_6 , 270 MHz): δ 5.9 (s, 1H, C₄), 2.75 (m, 2H, CH₂), 2.19 (m, 3H, CH_3), 1.27 (s, 9H), 1.19 (s, 9H); UV: λ_{max} 234 (cyclohexane); MS: m/e 192 (M+), 177, 121 (base), 57. MS M_r 192.1882. Calcd. for $C_{14}H_{24}$ 192.1878.
- 15. From 2-methy1-3-t-butylcyclopent-3-en-2-one¹⁶ and t-butyl lithium followed by gas chromatography (GC) to give an 80% yield of 11 and its two double bond shift isomers, which also are formed from pure 11 on GC. -
- 16. Sorensen, T. S.; Rajeswari, K. J. Am. Chem. Soc. 1971, 93, 4222.

(Received in USA 20 January 1982)